Genetic Mismatches Between Nuclei and Mitochondria Make Yeast Hybrids Sterile
نویسنده
چکیده
When one species mates with another, the resulting hybrids typically die or fail to reproduce. Hybrids can form between similar species from microorganisms to mammals, with the mule being a classic example. Sterile offspring of horses and donkeys, mules are prized for being more agile than the former, less obstinate than the latter, and smarter than both. But researchers prize hybrids for an additional reason: these reproductive dead ends could help explain how new species begin to form. A critical mechanism on the path to speciation is known as genetic incompatibility, in which genes from diverging species no longer interact properly. These improper interactions prevent these species from producing fertile offspring, leading to reproductive isolation. Understanding the basis of genetic incompatibility is key to identifying the driving forces of speciation. In a new study in this issue of PLoS Biology, Jun-Yi Leu and colleagues address the role of incompatibility between genomes in the nucleus and mitochondria in generating reproductive isolation in yeast. Mitochondria have a limited genome that produces a mere eight of the 1,000some proteins this organelle needs to function, leaving the overwhelming majority to be encoded in the nucleus. Nuclear-mitochondrial genetic incompatibility occurs broadly amongst organisms including plants, insects, amphibians, and primates, yet this intracellular conflict is not well understood at the molecular level. Although Baker’s yeast (Saccharomyces cerevisiae) mates readily with several close relatives, nearly all the gametes (spores) from these hybrids die. The researchers reported in 2008 that hybrids of S. cerevisiae and Saccharomyces bayanus exhibited a nuclear-mitochondrial mismatch (known as cytonuclear incompatibility): an S. bayanus nuclear gene (AEP2) blocked translation of an S. cerevisiae mitochondrial mRNA. In this study, Leu and colleagues set out to determine whether cytonuclear incompatibility is a common cause of reproductive isolation in yeast by investigating hybrids of S. cerevisiae (Sc) crossed with either S. bayanus (Sb) or Saccharomyces paradoxus (Sp). One parent in each cross was a mutant that effectively lacks mitochondria, thus allowing the researchers to track which species contributed these organelles to the hybrids. Mitochondria are key players in respiration, the process whereby cells produce energy, and growth assays revealed that most of the hybrid spores were respiration-deficient, indicating cytonuclear incompatibility. The worst cytonuclear mismatch was between Sc nuclei and Sb mitochondria, where about two-thirds of the spores failed to respire. Next, the researchers identified the genes causing this mismatch by screening for those that rescued respiration in the hybrid spores. In Sc nucleus-Sb mitochondria hybrids, respiration was restored by two Sb nuclear genes required for mitochondrial function, showing that the corresponding Sc nuclear genes were incompatible with Sb mitochondria. The genes were AIM22, which encodes a ligase required for mitochondrial protein lipoy-
منابع مشابه
Human-Yeast Hybrids: New Visions to Genetic Disorders and Drug Discovery
Yeast has been a very helpful organism for centuries, especially with respect to fermentation of sugars and production of bread. However, for an even longer time, yeast has been a distant relative of humans having diverged from a common ancestor, about one billion years ago. More than one third of the yeast genes have human counterparts, despite this evolutionary distance. Yeast and human ortho...
متن کاملبرآورد قابلیت ترکیب پذیری و اثرهای ژنی صفات زراعی در تعدادی
Information about combining ability of inbred lines and genetic variance components of different agronomic traits is a prerequisite for improving the productivity of sunflower hybrids. For this purpose, 20 hybrids obtained from the crosses between five cytoplasmic male sterile lines with four fertility restorer lines were evaluated in a randomized complete blocks design with three replications ...
متن کاملAdaptation of topoisomerase I paralogs to nuclear and mitochondrial DNA
Topoisomerase I is essential for DNA metabolism in nuclei and mitochondria. In yeast, a single topoisomerase I gene provides for both organelles. In vertebrates, topoisomerase I is divided into nuclear and mitochondrial paralogs (Top1 and Top1mt). To assess the meaning of this gene duplication, we targeted Top1 to mitochondria or Top1mt to nuclei. Overexpression in the fitting organelle served ...
متن کاملIncompatibility of Nuclear and Mitochondrial Genomes Causes Hybrid Sterility between Two Yeast Species
Hybrids between species are usually unviable or sterile. One possible mechanism causing reproductive isolation is incompatibility between genes from different species. These "speciation" genes are interacting components that cannot function properly when mixed with alleles from other species. To test whether such genes exist in two closely related yeast species, we constructed hybrid lines in w...
متن کاملLow fertility of wild hybrid male flycatchers despite recent divergence.
Postzygotic isolation may be important for maintaining species boundaries, particularly when premating barriers are incomplete. Little is known about the course of events leading from minor environmental mismatches affecting hybrid fitness to severe genetic incompatibilities causing sterility or inviability. We investigated whether reduced reproductive success of hybrid males was caused by subo...
متن کامل